An Implicitly Restarted Lanczos Bidiagonalization Method for Computing Smallest Singular Triplets

نویسندگان

  • E. Kokiopoulou
  • C. Bekas
چکیده

We describe the development of a method for the efficient computation of the smallest singular values and corresponding vectors for large sparse matrices [4]. The method combines state-of-the-art techniques that make it a useful computational tool appropriate for large scale computations. The method relies upon Lanczos bidiagonalization (LBD) with partial reorthogonalization [6], enhanced with implicit restarts and harmonic Ritz values. We note that although LBD has been successfully used for the approximation of largest singular values [5], our target in this paper is the computation of the smallest singular values. Thus, in order to design a matrix free method by avoiding shift-and-invert techniques we rely on harmonic Ritz values. Using LBD for the approximation of the smallest singular values often causes the lengths of the Lanczos bases to become quite large in order to obtain accurate approximations. For that reason, we embed an implicit restarting mechanism in LBD [12], which maintains memory requirements constant at each restart. In order to avoid the explicit inversion of A, we employ a harmonic Ritz value shift strategy [10, 9]. Harmonic Ritz values and vectors have been reported (see e.g. [8]) to be

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Refined Harmonic Lanczos Bidiagonalization Method and an Implicitly Restarted Algorithm for Computing the Smallest Singular Triplets of Large Matrices

The harmonic Lanczos bidiagonalization method can be used to compute the smallest singular triplets of a large matrix A. We prove that for good enough projection subspaces harmonic Ritz values converge if the columns of A are strongly linearly independent. On the other hand, harmonic Ritz values may miss some desired singular values when the columns of A are almost linearly dependent. Furthermo...

متن کامل

A harmonic Lanczos bidiagonalization method for computing interior singular triplets of large matrices

This paper proposes a harmonic Lanczos bidiagonalization method for computing some interior singular triplets of large matrices. It is shown that the approximate singular triplets are convergent if a certain Rayleigh quotient matrix is uniformly bounded and the approximate singular values are well separated. Combining with the implicit restarting technique, we develop an implicitly restarted ha...

متن کامل

Computing smallest singular triplets with implicitly restarted Lanczos bidiagonalization

A matrix-free algorithm, IRLANB, for the efficient computation of the smallest singular triplets of large and possibly sparse matrices is described. Key characteristics of the approach are its use of Lanczos bidiagonalization, implicit restarting, and harmonic Ritz values. The algorithm also uses a deflation strategy that can be applied directly on Lanczos bidiagonalization. A refinement postpr...

متن کامل

Augmented Implicitly Restarted Lanczos Bidiagonalization Methods

New restarted Lanczos bidiagonalization methods for the computation of a few of the largest or smallest singular values of a large matrix are presented. Restarting is carried out by augmentation of Krylov subspaces that arise naturally in the standard Lanczos bidiagonalization method. The augmenting vectors are associated with certain Ritz or harmonic Ritz vectors. Computed examples show the ne...

متن کامل

An Implicitly Restarted Block Lanczos Bidiagonalization Method Using Leja Shifts

In this paper, we propose an implicitly restarted block Lanczos bidiagonalization (IRBLB) method for computing a few extreme or interior singular values and associated right and left singular vectors of a large matrix A. Our method combines the advantages of a block routine, implicit shifting, and the application of Leja points as shifts in the accelerating polynomial. The method neither requir...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003